
mr4mp
Release 2.7.1

Andrei Lapets

Jun 09, 2023

CONTENTS

1 Purpose 3

2 Installation and Usage 5
2.1 Examples . 5

2.1.1 Word-Document Index . 5

3 Development 7
3.1 Documentation . 7
3.2 Testing and Conventions . 7
3.3 Contributions . 8
3.4 Versioning . 8
3.5 Publishing . 8

3.5.1 mr4mp module . 8

Python Module Index 13

Index 15

i

ii

mr4mp, Release 2.7.1

Thin MapReduce-like layer that wraps the Python multiprocessing library.

CONTENTS 1

https://badge.fury.io/py/mr4mp
https://mr4mp.readthedocs.io/en/latest/?badge=latest
https://github.com/lapets/mr4mp/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/lapets/mr4mp?branch=main

mr4mp, Release 2.7.1

2 CONTENTS

CHAPTER

ONE

PURPOSE

This package provides a streamlined interface for the built-in Python multiprocessing library. The interface makes it
possible to parallelize in a succinct way (sometimes using only one line of code) a data workflow that can be expressed
in a MapReduce-like form. More background information about this package’s design and implementation, as well a
detailed use case, can be found in a related article.

3

https://docs.python.org/3/library/multiprocessing.html
https://en.wikipedia.org/wiki/MapReduce
https://github.com/python-supply/map-reduce-and-multiprocessing

mr4mp, Release 2.7.1

4 Chapter 1. Purpose

CHAPTER

TWO

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install mr4mp

The library can be imported in the usual way:

import mr4mp

2.1 Examples

In addition to the use case in a related article and the example below, smaller examples for each of the methods can be
found in the documentation.

2.1.1 Word-Document Index

Assume there exists a collection of documents and that each document contains a collection of 7-character “words”.
This example demonstrates how a dictionary that associates each word to the collection of documents in which that word
appears can be built by leveraging multiprocessing and the MapReduce paradigm. Suppose the function definitions
below are found within a module example.py:

from random import choice
from string import ascii_lowercase
from uuid import uuid4

def word():
"""Generate a random 7-character 'word'."""
return ''.join(choice(ascii_lowercase) for _ in range(7))

def doc():
"""Generate a random 25-word 'document' and its identifier."""
return ([word() for _ in range(25)], uuid4())

def docs():
"""Generate list of 50 random 'documents'."""
return [doc() for _ in range(50)]

def word_to_doc_id_dict(document):
"""Build a dictionary mapping the 'words' in a 'document' to its identifier."""

(continues on next page)

5

https://pypi.org/project/mr4mp
https://github.com/python-supply/map-reduce-and-multiprocessing
https://mr4mp.readthedocs.io
https://docs.python.org/3/library/multiprocessing.html
https://en.wikipedia.org/wiki/MapReduce

mr4mp, Release 2.7.1

(continued from previous page)

(words, identifier) = document
return {w: {identifier} for w in words}

def merge_dicts(d, e):
"""Merge two dictionaries ``d`` and ``e``."""
return {w: (d.get(w, set()) | e.get(w, set())) for w in d.keys() | e.keys()}

The code below (also included in example.py) constructs a dictionary that maps each individual word to the set of
document identifiers in which that word appears. The code does so by incrementally building up larger and larger
dictionaries (starting from one dictionary per document via the word_to_doc_id_dict function and merging them
via the merge_dicts function), all while using the maximum number of processes supported by the system:

if __name__ == '__main__':
import mr4mp
from timeit import default_timer

start = default_timer()
p = mr4mp.pool()
p.mapreduce(word_to_doc_id_dict, merge_dicts, docs())
p.close()
print(

"Finished in " + str(default_timer()-start) + "s " +
"using " + str(len(p)) + " process(es)."

)

Note that any code invoking library methods must be protected inside an if __name__ == '__main__': block to
ensure that the multiprocessing library methods can safely load the module without causing side effects. Executing the
module might yield the output below:

python example.py
Finished in 0.664681524217187s using 2 process(es).

Suppose that it is explicitly indicated (by adding processes=1 to the invocation of pool) that only one process can
be used:

p = mr4mp.pool(processes=1)

After the above modification, executing the module might yield the output below:

python example.py
Finished in 2.23329004518571s using 1 process(es).

6 Chapter 2. Installation and Usage

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html#the-process-class
https://mr4mp.readthedocs.io/en/2.7.1/_source/mr4mp.html#mr4mp.mr4mp.pool

CHAPTER

THREE

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

3.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

3.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Some unit tests are included in the module itself and can be executed using doctest:

python src/mr4mp/mr4mp.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/mr4mp test/test_mr4mp.py

7

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.readthedocs.io

mr4mp, Release 2.7.1

3.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

3.4 Versioning

Beginning with version 0.1.0, the version number format for this library and the changes to the library associated with
version number increments conform with Semantic Versioning 2.0.0.

3.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged
versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

3.5.1 mr4mp module

Thin MapReduce-like layer that wraps the Python multiprocessing library.

class mr4mp.mr4mp.pool(processes=None, stages=None, progress=None, close=False)
Bases: object

Class for a MapReduce-for-multiprocessing resource pool that can be used to run MapReduce-like workflows
across multiple processes.

Parameters

• processes (Optional[int]) – Number of processes to allocate and to employ in executing
workflows.

• stages (Optional[int]) – Number of stages (progress updates are provided once per
stage).

• progress (Optional[Callable[[Iterable], Iterable]]) – Function that wraps an iter-
able (can be used to also report progress).

8 Chapter 3. Development

https://github.com/lapets/mr4mp
https://semver.org/#semantic-versioning-200
https://pypi.org/project/mr4mp
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable

mr4mp, Release 2.7.1

• close (Optional[bool]) – Flag indicating whether this instance should be closed after one
workflow.

>>> from operator import inv, add
>>> with pool() as pool_:
... results = pool_.mapreduce(m=inv, r=add, xs=range(3))
... results
-6

__enter__()
Placeholder to enable use of with construct.

__exit__(*exc_details)
Close this instance; exceptions are not suppressed.

mapreduce(m, r, xs, stages=None, progress=None, close=None)
Perform the map operation m and the reduce operation r over the supplied inputs xs (optionally in stages
on subsequences of the data) and then release resources if directed to do so.

Parameters

• m (Callable[. . . , Any]) – Operation to be applied to each element in the input iterable.

• r (Callable[. . . , Any]) – Operation that can combine two outputs from itself, the map
operation, or a mix.

• xs (Iterable) – Input to process using the map and reduce operations.

• stages (Optional[int]) – Number of stages (progress updates are provided once per
stage).

• progress (Optional[Callable[[Iterable], Iterable]]) – Function that wraps an it-
erable (can be used to also report progress).

• close (Optional[bool]) – Flag indicating whether this instance should be closed after
one workflow.

The stages, progress, and close parameter values each revert by default to those of this pool instance
if they are not explicitly supplied. Supplying a value for any one of these parameters when invoking this
method overrides this instance’s value for that parameter only during that invocation of the method (this
instance’s value does not change).

>>> from operator import inv, add
>>> with pool() as pool_:
... pool_.mapreduce(m=inv, r=add, xs=range(3))
-6

mapconcat(m, xs, stages=None, progress=None, close=None)
Perform the map operation m over the elements in the iterable xs (optionally in stages on subsequences of
the data) and then release resources if directed to do so.

Parameters

• m (Callable[. . . , Sequence]) – Operation to be applied to each element in the input iter-
able.

• xs (Iterable) – Input to process using the map operation.

3.5. Publishing 9

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Iterable

mr4mp, Release 2.7.1

• stages (Optional[int]) – Number of stages (progress updates are provided once per
stage).

• progress (Optional[Callable[[Iterable], Iterable]]) – Function that wraps an it-
erable (can be used to also report progress).

• close (Optional[bool]) – Flag indicating whether this instance should be closed after
one workflow.

In contrast to the pool.mapreduce method, the map operation m must return a Sequence, as the results
of this operation are combined using operator.concat.

The stages, progress, and close parameter values each revert by default to those of this pool instance
if they are not explicitly supplied. Supplying a value for any one of these parameters when invoking this
method overrides this instance’s value for that parameter only during that invocation of the method (this
instance’s value does not change).

>>> with pool() as pool_:
... pool_.mapconcat(m=tuple, xs=[[1], [2], [3]])
(1, 2, 3)

close()
Prevent any additional work from being added to this instance and release resources associated with this
instance.

>>> from operator import inv
>>> pool_ = pool()
>>> pool_.close()
>>> pool_.mapconcat(m=inv, xs=range(3))
Traceback (most recent call last):
...

ValueError: Pool not running

closed()
Return a boolean indicating whether this instance has been closed.

>>> pool_ = pool()
>>> pool_.close()
>>> pool_.closed()
True

Return type bool

terminate()
Terminate the underlying multiprocessing Pool instance (associated resources will eventually be re-

leased, or they will be released when the instance is closed).

cpu_count()
Return number of available CPUs.

10 Chapter 3. Development

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/operator.html#operator.concat
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#using-a-pool-of-workers

mr4mp, Release 2.7.1

>>> with pool() as pool_:
... isinstance(pool_.cpu_count(), int)
True

Return type int

__len__()
Return number of processes supplied as a configuration parameter when this instance was created.

>>> with pool(1) as pool_:
... len(pool_)
1

Return type int

mr4mp.mr4mp.mapreduce(m, r, xs, processes=None, stages=None, progress=None)
One-shot function for performing a workflow (no explicit object management or resource allocation is required
on the user’s part).

Parameters

• m (Callable[. . . , Any]) – Operation to be applied to each element in the input iterable.

• r (Callable[. . . , Any]) – Operation that can combine two outputs from itself, the map op-
eration, or a mix.

• xs (Iterable) – Input to process using the map and reduce operations.

• processes (Optional[int]) – Number of processes to allocate and to employ in executing
the workflow.

• stages (Optional[int]) – Number of stages (progress updates are provided once per
stage).

• progress (Optional[Callable[[Iterable], Iterable]]) – Function that wraps an iter-
able (can be used to also report progress).

>>> from operator import inv, add
>>> mapreduce(m=inv, r=add, xs=range(3))
-6

mr4mp.mr4mp.mapconcat(m, xs, processes=None, stages=None, progress=None)
One-shot function for applying an operation across an iterable and assembling the results back into a list (no
explicit object management or resource allocation is required on the user’s part).

Parameters

• m (Callable[. . . , Sequence]) – Operation to be applied to each element in the input iterable.

• xs (Iterable) – Input to process using the map and reduce operations.

• processes (Optional[int]) – Number of processes to allocate and to employ in executing
the workflow.

• stages (Optional[int]) – Number of stages (progress updates are provided once per
stage).

• progress (Optional[Callable[[Iterable], Iterable]]) – Function that wraps an iter-
able (can be used to also report progress).

3.5. Publishing 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable

mr4mp, Release 2.7.1

In contrast to the mapreduce function, the map operation m must return a Sequence, as the results of this
operation are combined using operator.concat.

>>> mapconcat(m=list, xs=[[1], [2], [3]])
[1, 2, 3]

12 Chapter 3. Development

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/operator.html#operator.concat

PYTHON MODULE INDEX

m
mr4mp.mr4mp, 8

13

mr4mp, Release 2.7.1

14 Python Module Index

INDEX

Symbols
__enter__() (mr4mp.mr4mp.pool method), 9
__exit__() (mr4mp.mr4mp.pool method), 9
__len__() (mr4mp.mr4mp.pool method), 11

C
close() (mr4mp.mr4mp.pool method), 10
closed() (mr4mp.mr4mp.pool method), 10
cpu_count() (mr4mp.mr4mp.pool method), 10

M
mapconcat() (in module mr4mp.mr4mp), 11
mapconcat() (mr4mp.mr4mp.pool method), 9
mapreduce() (in module mr4mp.mr4mp), 11
mapreduce() (mr4mp.mr4mp.pool method), 9
module

mr4mp.mr4mp, 8
mr4mp.mr4mp

module, 8

P
pool (class in mr4mp.mr4mp), 8

T
terminate() (mr4mp.mr4mp.pool method), 10

15

	Purpose
	Installation and Usage
	Examples
	Word-Document Index

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	mr4mp module

	Python Module Index
	Index

